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ABSTRACT
Large-scale data applications are increasingly a part of daily
life. For example, the GPS in your phone that can tell you
the fastest way to the airport incorporating real-time traffic
data, Netflix suggests movies based on your entire viewing
history, and the spam filters in email software learn indi-
vidual spam preferences. Some of these applications rely
on methodologies that are more ‘data hungry’ than others.
Predictive modeling based on fine-grained data, which pow-
ers many of these applications, often requires a great deal
of data, but relatively little understanding of any individual
data point. In this work, we examine some simple modeling
decisions that can make predictive modeling more privacy
friendly without jeopardizing its performance and ultimate
value.

Categories and Subject Descriptors
I.5.5 [Information Systems]: Pattern Recognition—Im-
plementation

General Terms
Security, Human Factors
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1. INTRODUCTION
A variety of modern technologies rely on data - lots of it.

Increasingly, the data being used across many industrial ap-
plications is generated by, and aptly describes the behavior,
of people. We leave a digital trail of bits and pieces behind.
Many of these data streams can deliver a lot of social good.
The location profiles emitted by a GPS enabled smart phone
can be use to recognize traffic jams, from which some analyt-
ical service might provide suggestions for alternate driving
routes. Additionally, the movies you have watched and the
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products you have purchased are frequently used to better
tailor future consumption experiences.

One of the most effective analytic solutions for data-driven
decision-making is predictive modeling. Applications in-
clude recommender systems for movies and products, tar-
geted advertising, fraud detection and many others. In order
to build such predictive models, one needs to collect data in
a very specific format, with both the outcome that is being
predicted (e.g. “is this email spam or not”) and the informa-
tion available at prediction-time (such as for spam detection,
the sender, recipient, subject, and body of the email). Stan-
dard predictive modeling systems have a few requirements
for data collection that are critical to predictive success:

• The system needs to link the outcomes to the predic-
tive information (features): If I know that 10 of your
messages were spam but not which ones, I cannot build
a model.

• Having more examples to learn from is better: With
only few emails, the model cannot identify the word
patterns that are indicative of spam. In fact the rarer
the outcome, the more examples that will be needed.

• More granular information generally leads to better
model performance: Knowing that you watched“Harry
Potter and the Sorcerer’s Stone” is much more valuable
for recommending the newest Harry Potter movie than
just knowing that you watched a kids movie.

• There is a close relationship between granularity and
number of observations. Prior research [2] has shown
a significant benefit to having large amounts of fine-
grained data for prediction.

Several of these requirements have direct privacy implica-
tions. The ability to connect outcomes and features often
necessitates some form of persistent user tracking. Most ap-
plications build up feature and outcome data over time (for
example, past purchases), so it is necessary to keep a run-
ning history associated to a particular individual. On the
Internet, the most common solutions are login-based and
cookie-based tracking. The evidence that more examples
indeed lead to better performance suggests a need for mas-
sive data collection and retention, but the length of time for
which data is stored is a common privacy concern. The re-
quirement of granularity can also be concerning as it makes
re-identification notably easier. There may be many people
who have seen 7 kids movies and 14 action movies, but very
few will have watched my exact set of 21 movies. Even the



famed Netflix prize fell under controversy when researchers
were able to re-identify individuals by name after compar-
ing movie’s rated on Netflix to profiles from other publicly
available movie rating websites.1

Every organization that stores and analyzes granular user
data should make it a priority to design and build their sys-
tems with privacy rights in mind. The above issues are not
new, but they are reminders that even those firms with the
best intentions may find themselves on the unfriendly side of
protecting personal data rights. In the interest of balancing
personal privacy rights with successful predictive modeling
this abstract explores recent developments in large-scale ma-
chine learning and their impacts on user privacy. Through
the lens of operating a large scale machine learning system
for behavioral ad targeting, we provide practical and em-
pirical insight into what machine-learning systems do not
need in order to be successful. The remainder of this paper
discusses these developments and gives strategies we have
employed in the domain of display advertising to mitigate
the privacy concerns listed above.

2. DISPLAY ADVERTISING
At Dstillery, we run an automated online display ad tar-

geting platform. We have described the system in much
greater detail in prior publications [6], so we give only a
brief overview here. Our customers are consumer brands;
they pay us to first identify Internet browsers with some
likely intent to purchase their product and then target them
with display ads. Specifically, we do not share the data but
actually execute the campaign through the programmatic
buying environments [3]. Typically, customers evaluate us
on some sort of post-view conversion rate, which is the rate
that users convert, without the need for a click, after see-
ing an ad. What exactly counts as a “conversion” differs by
campaign, but usually it requires buying something from the
customer’s web site.

We target browsers mainly based on partial histories of
they web use. The term browser here refers to an individual
browser cookie. If a user deletes his or her cookies or uses a
different computer, the user becomes a completely different
browser from the point-of-view of our system. For each of
our campaigns, we place pixels on the customer’s website.
These pixels call back to dstillery.com and allow us to
track any user who visits the customer’s site. Additionally,
we have partnerships with data providers, which give us a
snapshot of the browser’s general web browsing activity.

Our main classification models compute brand-propensity
scores based on the user’s browsing activity. If many of the
URLs in a browser’s cookie correlate positively with conver-
sion, the browser gets a high score, and if the user’s browsing
history correlates negatively with conversion, he or she gets
a very low score. The targetable audience for a given cam-
paign is some number of the highest-scoring browsers, with
the exact number depending on the campaign’s budget.

Under these constraints (i.e., that our system needs both a
URL history and a conversion history), respect for user pri-
vacy ultimately rests on data management strategies. Since
we cannot collect less data (and maintain the minimum per-
formance that generates customer value), we need to be con-
scientious about how we store, and how we use the data that

1http://www.wired.com/2009/12/
netflix-privacy-lawsuit/

we do collect. The remainder of this section outlines data
management strategies that we find to be sound for both
performance and privacy.

2.1 Online Learning with Feature Hashing
Our primary classification algorithm is Logistic Regres-

sion, trained incrementally using stochastic gradient descent
[7]. Incremental updates have a number of benefits in our
application. In addition to relaxing the requirement that
training data sets fit in memory, incremental training allows
us to begin making intelligent targeting decisions immedi-
ately, mere hours after the start of a new campaign.

Rather than store a giant map from URLs to model indices
(since a feature’s index in the feature vector needs to be
consistent in order for incremental updates to work), we
simply hash the URL into a very-high-dimensional space
and use this hash as the index. This approach is called
feature hashing [9] and is used in a number of large-scale
applications [1].

Multiple variants of feature hashing have been proposed
[8, 9], with later variants having better theoretical proper-
ties. The three general strategies are:

• Simply choose a dimensionality k and hash the original
feature name into an hashed index space. If a hash
collision occurs within the same instance, increment
the value of the feature by 1.

• Execute the above strategy, but replicated it with d
separate hash functions.

• Execute the above strategies, and when a collision oc-
curs within the same instance, increment the value of
the feature by a second hash function that takes values
of either -1 or 1.

From a privacy perspective, online learning with feature
hashing has very attractive properties. In addition to elimi-
nating the feature map, we no longer need to explicitly enu-
merate features at all. We can learn models that perform
well without even knowing what the final feature set actu-
ally is, or knowing the set of websites that any individual
browser has actually visited. This is not a perfectly secure
system by any means. We or anyone else could hash the
names of the most popular websites, for example, and know
with high probability (barring collisions) whether a particu-
lar cookie contains those sites. Regardless, feature hashing
greatly reduces the level of detail at which data is stored
and reduces the risk to the end user.

Our experiments have validated that we can implement
feature hashing with only a negligible impact on perfor-
mance. Table 1 shows the average Area Under the Receiver
Operator Curve and average Lift at 5% for several variants
of the feature hashing design across a canonical set of cam-
paign datasets. For this analysis we varied the dimensional-
ity of the hash space, varied the number of hash replications
used and varied whether or not we implemented the sec-
ond binary hash, as in [9]. We can see in this table that
several of the design variants result in minimal change in
performance. Changing the size of the hash space has the
most significant effect on performance. Our original feature
space has dimensionality around ten million URLs. When
we use a hash space of similar dimensionality we essentially



Hash Hash Dim Has Coinflip Hash Replications Avg AUC Avg Lift at 5%
No NA NA NA 0.728 8.53
Yes 5E+02 Yes 1 0.656 5.17
Yes 5E+03 Yes 1 0.708 7.75
Yes 5E+04 Yes 1 0.713 7.90
Yes 5E+05 Yes 1 0.715 7.94
Yes 5E+06 Yes 1 0.723 8.36
Yes 5E+07 Yes 1 0.728 8.53
Yes 5E+07 No 1 0.727 8.48
Yes 5E+07 Yes 2 0.725 8.53
Yes 5E+07 Yes 5 0.723 8.49
Yes 5E+07 Yes 10 0.722 8.48

Table 1: Comparison of model performance under different feature hashing approaches.

get no dilution in performance for any of the hashing strate-
gies explored. We only see a degradation when we reduce
the feature space significantly.

Compared to the baseline of no feature hashing, we can
achieve both better system maintenance and privacy friend-
liness with no customer impact. This is an ideal scenario
and highlights how a methodology that was invented to im-
prove the scalability of predictive modeling on Big Data has
a secondary benefit of being more consumer friendly. A pre-
dictive model doesn’t need to contextualize the data it learns
from - it only requires consistency. Feature hashing provides
such a mechanism.

2.2 Incremental Learning
While feature hashing reduces the amount of context we

need to store, incremental training reduces the amount of
data we need to store in the first place. Like with most
predictive applications, our targeting models perform best
when trained on more data sampled over longer time peri-
ods. Training models on large batches of data, say 60 days,
requires storing all 60 days of data on disk. Incremental
training requires only that we store one batch worth of data
for each model, where the size of a batch is completely con-
figurable. One position in the privacy conversation has been
“the right to be forgotten”. In an incremental learning set-
ting, the model acts as an aggregation of all the previously
seen data. It captures the state of knowledge and allows to
maintain high predictive performance with minimal require-
ments on data retention.

In spite of the reduced granularity and size of the training
data, our one-day incremental logistic regression model still
performs well and outperforms its predecessor at Dstillery
[4], a batch-trained Naive Bayes-like algorithm without fea-
ture hashing. Figure 1 shows median lift over random tar-
geting (over the course of a month) on a consistent set of
campaigns for both the batch and incremental models. The
incremental logistic regression consistently performs about
20% better than the batch Naive Bayes model.

2.3 Anonymous vs Semantic Data
In many popular applications involving large sparse data,

features can be annotated and grouped by some sort of se-
mantic similarity. Words can be grouped by topics or parts
of speech, movies can be grouped by genre or cast, and web-
sites can be grouped by topic or textural similarity, just as
examples. It is natural to assume that knowing semantic
information about a word, movie, or URL would be helpful
in prediction problems. Within our domain, there are two
different opportunities for semantically annotating our data:
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Figure 1: Performance comparison (measured as lift
over random) between incremental logistic regres-
sion with feature hashing and a batch-trained Naive
Bayes.

semantic analysis of web sites and demographic labeling of
browser cookies.

Resources are available for us to both add context to
our URL variables or attach demographic information to
cookies, but we have found that neither approach signifi-
cantly improves the predictive performance of our models.
Figure 2 compares the size and performance (for one cam-
paign) of segments built from our targeting models against
commercially-available third-party behavioural and demo-
graphic segments. Our own “segments” in this case, are sim-
ply groups of cookies ordered by model score (i.e., top X%
of the population according to the model, and then the next
X% and so on). One can see from the figure that at a given
scale, our own brand-specific segments consistently perform
better than the closest available demographic segment.

In prior work [5], we evaluated both open-source and com-
mercial categorization methods for URLs for the purpose of
dimensionality reduction and found that they generally did
not perform as well as methods that were agnostic to con-
text. In separate experiments, we have repeatedly found
that augmenting our high-dimensional feature set of raw
URLs with contextual information from those URLs pro-
vides negligible benefit to our targeting algorithms. Taken
together, our results suggest that in modern machine learn-
ing systems, a massive amount of anonymous data can be at
least as predictive as more personally-identifiable data such
as demographics and semantically-aware browsing behavior.
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Figure 2: Performance and scale of logistic regression model segments (black) vs demographic segments
(gray).

3. DISCUSSION
It is possible today to attach age, gender, interests and

some reasonably accurate estimate of location to a large
number of cookies. The ability to re-identify an anonymized
cookie only increases with the number of descriptive features
attached to it. Beyond cookies, this phenomenon applies to
any “anonymized” data set, as we have learned from the
lawsuits stemming from the release of the Netflix data. The
methods we presented here may be used by firms to reduce
the risk that the data they use or release may subvert a user’s
right to data privacy. Our experience at Dstillery shows that
we can lean in this direction and not even consider it a sac-
rifice - our models perform quite well in the absence of the
contextual or semantic labeling of data.

Like with any machine learning task, there is no ‘one-size-
fits-all’ approach to improving privacy and ethically mining
consumer data. Some predictive models, such as credit de-
fault models, are used to deny products or services to indi-
viduals who score poorly. Such models are legally prohibited
from incorporating any variable, such as race, gender, or sex-
ual orientation, that deals with membership in a protected
class. In this case, feature hashing creates a black box that
makes it more difficult to audit the models and ensure they
abide by the appropriate regulations.

Every firm that engages in the collection, storage and us-
age of individual-level data for predictive modeling has the
responsibility to balance respect for individual privacy and
creating shareholder value. Often times this balance isn’t
quantifiable, but methodological transparency to both ex-
perts and consumers is a positive signal to all stakeholders
that this balance is actively being sought.
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