
Decision Tree Classification on Outsourced Data

Koray Mancuhan
∗

Purdue University
305 N University St

West Lafayette, IN 47906
kmancuha@purdue.edu

Chris Clifton
Purdue University

305 N University St
West Lafayette, IN 47906

clifton@cs.purdue.edu

ABSTRACT
This paper proposes a client-server decision tree learning
method for outsourced private data. The privacy model is
anatomization/fragmentation: the server sees data values,
but the link between sensitive and identifying information
is encrypted with a key known only to clients. Clients have
limited processing and storage capability. Both sensitive
and identifying information thus are stored on the server.
The approach presented also retains most processing at the
server, and client-side processing is amortized over predic-
tions made by the clients. Experiments on various datasets
show that the method produces decision trees approach-
ing the accuracy of a non-private decision tree, while sub-
stantially reducing the client’s computing resource require-
ments.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining; H.2.7 [Database Management]: Database
Administration-Security, Integrity and Protection

Keywords
Anatomy, l-diversity, Data Mining, Decision Trees

1. INTRODUCTION
Data publishing without revealing sensitive information is
an important problem. Many privacy definitions have been
proposed based on generalizing/suppressing data (l-diversity
[21], k-anonymity [28] [29], t-closeness [20]). Other alterna-
tives include value swapping [23] and noise addition (e.g.,
differential privacy [8]). Generalization consists of replacing
identifying attribute values with a less specific version [4].
Suppression can be viewed as the ultimate generalization, re-
placing the identifying value with an “any” value. [4]. These
approaches have the advantage of preserving truth, but a

∗The author was visiting Qatar University when this work
was prepared.

less specific truth that reduces the utility of the published
data.

Xiao and Tao proposed anatomization as a method to en-
force l-diversity while preserving specific data values [32].
Anatomization splits tuples across two tables, one contain-
ing identifying information and the other containing pri-
vate information. The more general approach of fragmen-
tation [5] divides a given dataset’s attributes into two sets
of attributes (2 partitions) such that an encryption mech-
anism avoids associations between two different small par-
titions. Vimercati et al. extend fragmentation to multiple
partitions [6], and Tamas et al. propose an extension that
deals with multiple sensitive attributes [10]. The main ad-
vantage of anatomization/fragmentation is that it preserves
the original values of data; the uncertainty is only in the
mapping between individuals and sensitive values.

There is concern that anatomization is vulnerable to sev-
eral prior knowledge attacks [16], [12]. While this can be
an issue, any method that provides any meaningful utility
fails to provide perfect privacy against a sufficiently strong
adversary [8]. Legally recognized standards such as the so-
called “Safe Harbor” rules of the U.S. Healthcare Insurance
Portability and Accountability Act (HIPAA) [13] allow re-
lease of data that bears some risk of re-identification; the
belief is that the greater good of beneficial use of the data
outweighs the risk to privacy.

This paper does not attempt to resolve that issue (although
we use a randomized rather than optimized grouping that
provides resistance to the type of attacks above.) Instead,
this paper attempts to develop a simple and efficient deci-
sion tree learning method from an l-diverse dataset which
satisfies l-diversity in anatomization. The developed deci-
sion tree is embedded into a recent client-server database
model [24,25].

The database model is a storage outsourcing mechanism that
supports anatomization. In this database model, the client is
the owner of the data and stores the data at the server in an
l-diverse anatomy scheme. The server provides some query
preprocessing that reduce client’s workload. The model pro-
posed by Nergiz et al. has four significant aspects relevant
to this paper [24,25]: 1) a given data table (or dataset) of a
client is split into two partitions, a sensitive table (single sen-
sitive attribute) and an identifier table (multiple identifying
or quasi-identifying attributes). 2) A join key is stored with

the data, but encrypted with a key known only to the client,
preventing the server from associating a sensitive value with
the correct identity. 3) There is also an unencrypted group-
level join key allowing the server to map a group of identi-
fiers with a group of sensitive attributes, these groups are
l-diverse. 4) The server can use this group information to
perform some query processing (or in the case of this paper,
tree learning), reducing the client effort needed to get final
results. The reader is advised to visit [24, 25] for further
details and performance aspects of Nergiz et al.’s database
model.

This paper investigates whether it is possible to learn a deci-
sion tree in the above database model with minimal client re-
source usage. We assume that the client has limited storage
and processing resources, just enough to make small refine-
ments on any model learned at the server. The remainder of
this paper refers to the server of Nergiz et al.’s client-server
database model as a cloud database server (CDBS). Terms
“CDBS” and “server” are used interchangeably.

1.1 Related Work
There have been studies in how to mine anonymized data.
Fung et al. [9] give a top-down specialization method (TDS)
for anonymization so that the anonymized data allows ac-
curate decision trees. Chui et al. [3] and Leung et al. [18]
address the frequent itemset mining problem. Ngai et al.
proposes a clustering algorithm that handles the anonymized
data as uncertain information [26]. Kriegel et al. propose a
hierarchical density based clustering method using fuzzy ob-
jects [17]. Xiao et al. discusses the problem of distance cal-
culation for uncertain objects [31]. Nearest Neighbor classifi-
cation using generalized data is investigated by Martin [22].
Zhang et al. studies Naive Bayes using partially specified
data [33]. Dowd et al. studies decision tree classifier with
random substitutions [7]. Kantarcioglu et al. proposes a new
Support Vector classification and Nearest Neighbor classifi-
cation that deals with anonymized data [14]. They extend
the generalization based anonymization scheme to keep all
necessary statistics and use these statistics to build effective
classifiers. Freidman et al. investigate learning C4.5 deci-
sion trees from datasets that satisfy differential privacy [27].
Jagannathan et al. propose a tree classifier based on random
forests that is built from differentially private data [15].

These methods are all based on generalization/suppression
or noise addition techniques. Anatomized data provides ad-
ditional detail that has the potential to improve learning,
but also additional uncertainty that must be dealt with.
In addition, the database model of [24, 25] provides exact
matching information that can be extracted only at the
client; providing additional opportunities to improve learn-
ing.

Another approach related to mining anatomized data in the
client-server database model is vertically partitioned data
mining (e.g., [11, 30]). Vertically partitioned data mining
makes strong assumptions about data partitions and what
data can be shared, and typically assume that each party
holding data has significant computational power. For ex-
ample, some decision tree techniques assume that two tu-
ples of two partitions can be linked directly to each other,
that the tuples are ordered in the same way; and that the

class labels are known for both partitions. In one sense, our
problem is easier, as one party (client) can see all the data.
However, we assume this party (again client) does not have
the resources to even store all the data, much less to build
the tree.

1.2 Contributions
The model of [25] would allow a client to construct an exact
decision tree by downloading the identifier and sensitive ta-
bles of a dataset (or data table), decrypting the join key, and
joining the identifying and sensitive information (rebuilding
the original dataset). The remainder of this paper will use
terms dataset and data table interchangeably. The goal of
this paper is to reduce resource requirements at the client, by
doing as much work as possible at the server. The challenge
is that the server is not allowed to know exact mappings be-
tween identifying and sensitive information (and server can’t
know without background knowledge these mappings due to
l-diversity of anatomization scheme).

We assume that the class attribute is not the sensitive at-
tribute, as effectively learning this at the server implies a
de-facto violation of l-diversity. However, predicting values
that fall into identifying information (e.g., predicting geo-
graphic location given other demographics and a disease)
does not necessarily face this difficulty. We thus perform
processing involving identifying attributes at the server. The
client then needs only do the necessary processing to utilize
the sensitive attribute to complete the tree.

The key novelty is that this final processing is:

1. Performed only when a prediction would make use of
that information, and

2. The cost is amortized over many predictions.

The resource requirements (including memory, CPU cost,
and communications) remain relatively low per prediction,
thus allowing this to be performed on lightweight clients that
are assumed to have limited storage capabilities.

We first give a set of definitions and define a prediction task
for anatomized data. We then detail our method, along
with cost and privacy discussions. Section 4 shows per-
formance with experiments on various UCI datasets. The
performance evaluation includes execution time, memory re-
quirement and classification accuracy. We conclude the pa-
per with a brief summary and future directions.

2. DEFINITIONS AND PREDICTION TASK
We give a set of definitions that are required to explain our
work, and use them to define the prediction task for anato-
mized data.

Definition 1. A dataset D is called person specific dataset
for population P if each tuple t ∈ D belongs to a unique
individual p ∈ P .

The person specific dataset D has A1, · · · , Ad identifier at-
tributes and a sensitive attribute As. We use D.Ai to refer

to the ith attribute of a person specific dataset D. Similarly,
we use t.Ai to refer to the ith attribute of a tuple in a person
specific dataset D (either 1 ≤ i ≤ d or i = s holds).

Definition 2. A group Gj is a subset of tuples in dataset
D such that D = ∪m

j=1Gj , and for any pair (Gj1, Gj2) where
1 ≤ i 6= j ≤ m, Gj1 ∩Gj2 = ∅.

Definition 3. A set of groups is said to be l-diverse if and

only if for all groups Gj ∀v ∈ πAsGj ,
freq(v,Gj)

|Gj |
≤ 1

l
where

As is the sensitive attribute in D, freq(v,Gj) is the fre-
quency of v in Gj and |Gj | is the number of tuples in Gj .

We define anatomy as in [24,25].

Definition 4. Given a person specific datasetD partitioned
in m groups using l-diversity without generalization, anatomy
produces a identifier table IT and a sensitive table ST as
follows. IT has schema

(A1, ..., Ad, GID,ESEQ)

where Ai ∈ IT for 1 ≤ i ≤ d = |IT |, IT is the set of iden-
tifying attributes in D, GID is the group id of the group
and ESEQ is the encryption of a unique sequence num-
ber, SEQ. For each Gj ∈ D and each tuple t ∈ Gj (with
sequence number s), IT has a tuple of the form:

(t.A1, ..., t.Ad, j, Ek(salt, s))

The ST has schema

(SEQ,GID,As)

where As is the sensitive attribute in D, GID is the group id
of the group and SEQ is a (unique but randomly ordered)
sequence number for that tuple in ST , used as an input
for the ESEQ of the corresponding tuple in IT . For each
Gj ∈ D and each tuple t ∈ Gj , ST has a tuple of the form:

(s, j, t.As)

The reason why the anatomy definition [32] is extended
in [24, 25] and in this paper is that CDBS operations like
selection, insertion, deletion etc. require the consideration
of the (encrypted where necessary) sequence number. The
sequence number is in fact used to rebuild the original map-
ping between the identifying attributes and the sensitive
attributes of a given tuple (cf. Section 1). The sequence
numbers and encrypted sequence numbers are created dur-
ing the splitting phase of an outsourced table (cf. Section
1). Here is a brief explanation of how this mechanism works
in several database operations:

Firstly, ESEQ field values in the identifying table are de-
crypted by the client to find the true sequence number of
given tuples. Secondly, the true sequence number values in
the identifying table is equi-joined with the sequence num-
ber SEQ field values in the sensitive table. The database
has some sequence numbers in the sensitive table ST which
are same as the true sequence numbers (this is guaranteed
in the initial splitting phase, see Section 1). The original
tuples are eventually rebuilt after this equi-join operation.
The reader is directed to [24, 25] for further issues about
CDBS design. In this paper, we will use sequence number
values to do client-side refinement of the decision tree.

Definition 5. An l-diverse group G is said to have a simple
l-diverse distribution if

∀p ∈ G and ∀v ∈ πAsGj , P (p.As = v) =
(freq(v,Gj))

|Gj |

where p denotes an individual and As, freq(∗) are as in
Definition 3.

Definition 6. A person specific dataset D has simple l-
diverse distribution if for every groupGi ∈ D where 1 ≤ i ≤ m
holds, Gi has a simple l-diverse distribution according to
Definition 5.

This paper focuses on collaborative decision tree learning
between the client and CDBS. Next, we define the principal
components of the collaborative decision tree.

Definition 7. Given two partitions IT and ST of a person
specific dataset D, a base decision tree (BDT) is a decision
tree classifier that is built from A1, · · · , Ad attributes (IT).
Given a BDT that has leaves Y ; every leaf y ∈ Y has tuples
in the following format:

(t.A1, · · · , t.Ad, j, Ek(salt, s))

j, Ek(salt, s) fields are ignored when the BDT is learned.
Note that the BDT maintains the simple l-diverse distribu-
tion which is the privacy constraint of CDBS. Given a leaf
y ∈ Y , each tuple t ∈ y is equally likely to matchl different
values of As. The privacy issues with the base decision tree
are discussed in the next section.

Definition 8. Given a base decision tree BDT , the leaves
Y ∈ BDT ; a leaf y ∈ Y is called a refined leaf if and only if
it points to a sub-tree rooted at y that is encrypted (using
symmetric key encryption).

We will elaborate in the privacy discussion of the next sec-
tion how and why a base decision tree has encrypted sub-
trees.

Definition 9. Given a base decision tree BDT , the leaves
Y ∈ BDT ; a leaf y ∈ Y is called unrefined leaf if and only
if it doesn’t point to a sub-tree rooted at y.

In the remainder of this paper, Y is used to note the leaves
of a decision tree.

We finish the discussion in this section by defining the pre-
diction task of our classifier. The prediction task is to pre-
dict an identifying attribute (Ai ∈ IT) given other identify-
ing attributes (Aj satisfying 1 ≤ i 6= j ≤ d) and the sensitive
attribute (As).

A real life example would be learning from patient health
records. The U.S. Healthcare laws protect individually iden-
tifiable health information [1]. An anatomized database,
while it contains individually identifiable information, does
not link this directly to the (sensitive) health information.
Suppose we have public directory information as identify-
ing attributes including zipcode, gender, age, as well
as specific identifiers such as name (which are presumably
uninteresting for building a decision tree.) We also have a
sensitive table consisting of diagnosis. Suppose the goal
was to identify locations where people with particular back-
grounds (including health conditions) live, through learning
a decision tree with class value location. While this seems
a somewhat contrived example, it would likely have identi-
fied the infamous Love Canal district [19] as an unusually
common location for those with the diagnosis birth defect.

3. ANATOMIZATION DECISION TREES
We investigate three possible approaches to build decision
trees from anatomized data in Nergiz et al.’s client-server
database model. We call this family of decision trees as
anatomization decision trees, because they are all built from
anatomized data. Each approach differs according to how
IT and ST tables are used.

In the discussion of anatomization decision trees, algorithms
that require encryption are assumed to use AES-128 sym-
metric key encryption. We first discuss two baseline ap-
proaches: pure-client side learning, and pure server-side learn-
ing. Section 3.2 explains the collaborative decision tree
learning. We finally compare collaborative decision tree
learning with the baselines in Section 3.3.

3.1 Baseline Approaches: CDBS Learning and
Client Naïve Learning

The baseline approaches compose two different scenarios for
learning. The first scenario is that the CDBS learns a base
decision tree using only the IT partition of dataset D (cf.
Section 2). The second scenario is that client learns a deci-
sion tree using the person specific dataset D retrieved from
the CDBS. We call the first learning scenario CDBS learning
and the second learning scenario client näıve learning.

In client näıve learning, the client retrieves the person spe-
cific dataset D by getting all the tuples in the respective IT
and ST partitions of D. IT and ST partitions are joined
together using the join key and the non-anatomized set of
records in dataset D is obtained (cf. Sections 1 and 2). The
client learns decision tree from this non-anatomized set of
records in dataset D. In other words, the client rebuilds
from its outsourced data the non-anatomized version (orig-
inal version) of dataset D and learns the decision tree it-
self without any attribute uncertainty. Client näıve learning

Main():

begin:

 baseDT:= LearnDT(QIT)

 while(TRUE):

 begin:

 ins:=getInstance(clientIp)

 FindBDTLeaf(baseDT, ins)

 end

end

Figure 1: Collaborative Learning Main Function
(Called by Server)

brings up some vital issues and respective solutions below:

The privacy aspect of the decision tree is an issue. The
client learns the decision tree from the non-anatomized ver-
sion of D, so the identifying attributes and the sensitive at-
tribute are associated in the decision tree. The client has to
store this model at the CDBS (limited storage resource as-
sumption, see Section 1), but since the model is built from
non-anatomized dataset, it may reveal information violat-
ing privacy constraints (particularly in conjunction with the
anatomized data). The solution is to encrypt the decision
tree and to store the encrypted tree at CDBS.

Encrypting the decision tree raises the issue of how to make
an inference of the class label for a new instance. The CDBS
cannot make the inferences because the stored tree is en-
crypted. This leads to the following approach: each time
the class label of a new tuple is predicted, the client re-
trieves the encrypted decision tree, decrypts the encrypted
decision tree and makes the prediction. This makes the in-
ference phase quite expensive for the client in client näıve
learning.

The other extreme is CDBS learning: the server constructs
a base decision tree using only the identifying information.
Base decision tree makes the prediction operation very easy
and low cost for the client. Given a predicted tuple tp and
a base decision tree for predicting class label Ac ∈ IT ; the
client just deletes the attribute field tp.As (an O(1) time
operation). Then, it sends the rest of the tuple tp to the
CDBS and CDBS makes the tree inference. The client has
O(1) inference cost and network overhead. This low cost
for client is the main advantage of CDBS learning. The
drawback of CDBS learning is that the base decision tree
ignores the sensitive attribute. This is not a big drawback if
As is a weak predictor of the class label. On the other hand,
the base decision tree’s accuracy is likely to be low if As is
a strong predictor of the class label.

3.2 Collaborative Decision Tree Learning
One way to mitigate the drawbacks of CDBS learning and
client näıve learning is the usage of grouping statistics among
anatomy groups of the person specific dataset D. Grouping
statistics are the distribution of As among anatomy groups
Gi provided that 1 ≤ i ≤ m and ∪mGi = D hold. Grouping
statistics might have the potential to determine an interest-
ing decision tree split for a class label Ai ∈ IT . However,
to avoid correlation-based attacks, we assume the insertion

FindBDTLeaf(BDT, ins):
Input:

 BDT: base decision tree on CDBS
 ins: predicted instance

begin:

 leaf:=findLeaf(BDT, ins)
 if(leaf.hasEncryptedSubtree()==TRUE):
 begin:

encrSubtree:=leaf.getEncryptedSubtree()

 sentMessage(encrSubtree)
 end
 else:
 begin:

 leafIns:=leaf.getInstances()

leafIns:=joinTables(leafIns,ST,GID)

sendMessage(leafIns)
 end
end

Figure 2: Collaborative Learning FindBDTLeaf
Function (Called by Server)

operation of CDBS is designed to create groups randomly
while satisfying the simple l-diverse distribution [25]. It is
unlikely to find an interesting pattern for split using group
statistics.

This paper proposes a new collaborative decision tree al-
gorithm involving CDBS and client collaboration. Given a
dataset D partitioned on IT and ST , IT and ST partitions
stored on CDBS, a class label Ai ∈ IT ; CDBS initiates build-
ing the collaborative decision tree. First, the server builds a
base decision tree. Then, the base decision tree leaves Y are
improved by the client. For every leaf y ∈ Y , the improve-
ment is a sub-tree learned by the client. The client uses the
tuples in leaf y to learn an improved sub-tree. Figures 1,
2 and 3 give pseudo code of the collaborative decision tree
learning process.

Figure 1 shows the Main() function that is called by CDBS
to initiate collaborative learning. The LearnDT(IT) func-
tion call builds the base decision tree from the IT partition.
The client improvements on the base decision tree are made
on the fly when doing predictions. To make a prediction,
a tuple (ins.A1, · · · , ins.Ai−1, ins.Ai+1, · · · , ins.Ad) is sent
to the CDBS. The getInstance() function call receives
the sent tuple ins (cf. Figure 1). FindBDTLeaf(baseDT,
ins) function is called by CDBS for every predicted tuple
ins once the predicted tuple ins is received by getInstance()
calls (cf. Figure 1).

The FindBDTLeaf function essentially finds the appropri-
ate base decision tree leaf y ∈ Y for the client to complete (if
not already done) and sends leaf y to the client (cf. Figure
2). Given tuple ins and the base decision tree baseDT,
the findLeaf(BDT,ins) function call finds the correct
leaf y ∈ Y using a usual decision tree inference with at-
tribute values (ins.A1, · · · , ins.Ai−1, ins.Ai+1, · · · , ins.Ad).
Then, FindBDTLeaf verifies if y points to an encrypted
sub-tree that was previously learned by a client (if state-
ment in pseudocode). (The subtree is encrypted to ensure
privacy constraints are satisfied, this will be discussed in
more detail later.) If y points to an encrypted sub-tree, it

Inference(server_ip, ins ,key):

Input:

 server_ip: ip address of CDBS

 ins: predicted instance

 key: encryption key
Output:

 clsLbl: class label predicted
begin:

 sendInstance(server_ip, ins)
 message:=receiveMessage(server_ip)

 if(message==encrTree):

 begin:

 subTree:=decipherTree(encrTree, key)

 leaf:=findLeaf(subTree, ins)

 leafIns:=leaf.getInstances()

clsLbl:=majorityLabel(leafIns)

 end

 if(message==leafIns):

 begin:

 //like selection in [23]

instances:=trueInstances(leafIns,ST)

 subTree:=learnDT(instances)

encrSubtree:=encryptTree(subTree,key)

 updateBDT(server_ip, encrSubtree)

leaf:=findLeaf(subTree, ins)

 leafIns:=leaf.getInstances()

clsLbl:=majorityLabel(leafIns)

 end

return clsLbl

end

Figure 3: Collaborative Learning Inference Func-
tion (Called by Client)

sends the client the encrypted sub-tree as a response mes-
sage (sentMessage(encrSubTree) function call). Oth-
erwise, CDBS sends the tuples belonging to y by function
call sentMessage(leafIns).

All tuples t ∈ y are partitioned across IT and ST on CDBS.
Reconstructing the original tuples t ∈ y is done on the client
side (Inference() function call, cf. Figure 3, explained
later). The joinTables(leafIns, ST, GID) function
call prepares the message leafIns including the following
tuples: leafIns include every tuple t ∈ y with all combi-
nations of l sensitive attributes. In other words function
joinTables() matches every tuple t ∈ y with all l po-
tential sensitive attributes using the GID field as the join
key (a group-level join, giving all possible tuples given the
l-diverse dataset, not just the true matching values). The
explanation of Inference() function will clarify why this
join operation is done (cf. Figure 3).

A client calls the Inference() function to make predic-
tions or on the fly improvements (cf. Figure 3). The client
sends a predicted tuple ins to the CDBS using the sendInstance()
function. It receives the message sent by function FindBDTLeaf()
using receiveMessage(). As mentioned in the FindBDTLeaf()
discussion, the message can be either an encrypted sub-tree
(encrTree) or tuples t of leaf y (leafIns). leafIns is in
fact all tuples t ∈ y such that every tuple t is matched with
all l potential sensitive attribute values. If the message
is an encrypted sub-tree (encrTree), Inference() just
decrypts the encrypted sub-tree using decipherTree()
function, finds the appropriate leaf y′ as in regular tree in-
ference using findLeaf() function and predicts the class
label of tuple ins by taking majority of the class labels

in y′ using majorityLabel() function. If message is
leafIns, the Inference() function reconstructs the non-
anatomized leaf instances (instances) from leafIns: it
decrypts the encrypted sequence numbers ESEQ in iden-
tifying attributes of leafIns to find true sequence num-
bers and eliminates the tuples t of leafIns that don’t have
the sensitive table sequence numbers SEQ the same as true
sequence numbers. trueInstances() function does the
former operation. We discussed earlier in Section 2 how
this sequence number fields are designed and how they are
used in Nergiz et al.’s client server database model [24, 25].
Inference() learns a sub decision tree (subTree) from
instances using learnDT() function, encrypts subTree
(encryptTree() function call) and sends subTree back to
CDBS for updating as we discussed earlier in FindBDTLeaf().
Finally, Inference() finds the appropriate leaf y′ as in reg-
ular tree inference using findLeaf() function and predicts
the class label of tuple ins by taking majority of the class
labels in y′ using majorityLabel() function.

We finish the discussion in this subsection by considering the
encryption of the client’s improved sub-trees. Encryption
is necessary due to privacy concerns. Once the sub-tree is
built, it has leaves having tuples in (t.A1, · · · , t.Ad, t.As)
format. Moreover, the sub-tree also has splits with the true
values of As. Thus, whole sub-tree should be encrypted
so that no additional information regarding the correlation
between tuples and sensitive values is provided to the CDBS
when the sub-tree is stored. The symmetric key encryption
of sub-tree preserves the privacy of person specific dataset
D according to following theorem.

Theorem 1. (Privacy Preserving Learning): Given a per-
son specific dataset D on CDBS having a simple l-diverse
distribution, the collaborative decision tree learning preserves
the simple l-diverse distribution of D.

Proof. Given a snapshot IT (i) and ST (i) of D on CDBS
at time i, suppose that a collaborative decision tree is learned
using the algorithm in Figures 1–3. CDBS learns the asso-
ciations within the identifying attributes (Figure 1). The
CDBS is allowed to learn such associations according to
its privacy definition [24] [25]. These associations do not
provide any background information linking identifying at-
tributes and sensitive attribute. The Client learns all asso-
ciations within identifying attributes and the sensitive at-
tribute (cf. Figure 3), but no additional information is
provided back to the server (except in encrypted form.)
The simple l-diverse distribution is maintained for snapshots
IT (i), ST (i) at ith time. The inference operation at jth
time (1 ≤ i ≤ j ≤ ∞) is done with CDBS and client. The
base decision tree has only associations between identifying
attributes, so the CDBS part of inference is safe. The en-
crypted sub-trees are used on client side of inference, so as-
suming semantically secure encryption this gives no further
information to the CDBS. Throughout predictions, some
base decision tree leaves might never be visited, but this
only discloses that certain identifying information has not
come up for prediction. This is not a disclosure case about
sensitive information. CDBS cannot know whether the sen-
sitive attribute has a better information for the unvisited
leaves’ tuples as sensitive attributes’ positive/negative cor-

relation or uncorrelation with identifying attributes would
not be known without any background knowledge. The en-
crypted subtrees of visited leaves do not let CDBS learn this
kind of correlation information. Consequently, collaborative
decision tree learning preserves the simple l-diverse distri-
bution in inference at time j.

Our privacy analysis doesn’t include the case where there are
multiple clients that outsource different data. The reader
might be concerned that if there are multiple clients who
outsource their data in anatomization format, some clients’
identifying information can be other clients’ sensitive infor-
mation. This cross correlation might create privacy concerns
about the whole client-server database model. This is an is-
sue dealt in the original Nergiz et al.’s client-server database
model [24, 25]. Since we have shown that our decision tree
learning reveals no additional information, it cannot result
in privacy violations provided the underlying database does
not violate privacy constraints.

3.3 Cost Discussion
It is difficult to estimate a practical average cost savings for
collaborative decision tree learning, as it depends not only
on the data, but on the client’s memory, processing, and
communication resources.

If the identifying attributes are bad predictors, the base de-
cision tree will be complex. A complex decision tree model
means that it has many splits yielding small leaves, requir-
ing only a small amount of client memory and computa-
tion during the prediction phase. The client needs to build
more complex sub-trees to achieve good prediction. How-
ever, small leaves means that the cost per sub-tree will be
small, even though the total cost (amortized over many pre-
dictions) is high. If the identifying attributes are good pre-
dictors, the base decision tree will be simple. A tree having
few splits will yield fewer, but larger leaves. This increases
the cost for the first prediction, but also increases the like-
lihood that future predictions will hit an already completed
subtree.

In either case, the client requires less memory than client
näıve learning, as it needs to hold at most the tuples that
reach a leaf, along with all possible sensitive values for those
tuples. The next theorem gives an upper bound for collabo-
rative decision tree learning cost under reasonable assump-
tions and feasible alternatives.

Theorem 2. (Cost Upper Bound) Given a person spe-
cific dataset D, IT and ST partitions on CDBS storing D,
similar number of splits in base decision tree, client improve-
ment sub-trees and client näıve learning tree; the client cost
of collaborative decision tree learning cannot be bigger than
client näıve learning’s cost.

Proof. Assume that D is O(n×m) where n is the num-
ber of rows and m is the number of attributes. Let us also
assume that the client cost of collaborative decision tree
learning is bigger than the client näıve learning cost. Given a
base decision tree with O(m) leaves, depth, and split (worst
case tree type); the total cost of base decision tree learning

is O(nm2). This cost is excluded in client cost since it is
not executed by the client. Given a client sub-tree on the
ith base decision tree leaf (ni is number of rows) with O(m)
splits, leaves and depth (same as base decision tree); the
cost of learning a sub-tree is O(nim

2). The total cost of
collaborative decision tree learning is O(

∑
i nim

2) which is
O(nm2) (1 ≤ i ≤ m). Given client näıve learning’s result-
ing model with O(m) splits, leaves and depth (same as base
decision tree); the total client cost is O(nm2). Client näıve
learning has a client cost that is equal to the collaborative
decision tree learning’s client cost. This result contradicts
to the basic assumption. Thus, collaborative decision tree
learning cost cannot be bigger than client näıve learning cost
by contradiction.

The same theorem can be developed for encryption, decryp-
tion and network costs as well (intrinsic). The number of
splits assumption in the cost theorem is a worst case as-
sumption for cost calculation. In practice, the sub-tree on
the ith leaf of the base decision tree will be much simpler
(have fewer splits) than both the base decision and client
näıve learning trees. Client sub-trees would be learned from
less data and less data yields the simple subtrees having
fewer splits. Fewer splits mean low training, inference, en-
cryption/decryption and network costs for client in collabo-
rative decision tree learning.

4. EXPERIMENTS
We now compare our collaborative decision tree learning
(cdtl) with the client näıve (cnl) and CDBS learning (cdbsl)
on four datasets from the UCI collection: adult, vote, autos
and Australian credit. We evaluate two things: The clas-
sification accuracy (presumably better than clbs, but worse
than client näıve), and the cost for those performance im-
provements.

The Adult dataset is composed of US census data. An in-
dividual’s income is the class attribute (more than 50K vs
less than 50K). It has 48842 tuples where each tuple has
15 attributes. The Vote dataset contains 485 tuples where
each tuple has 16 binary attributes. An attribute is the
vote of a senator in a session. A senator’s party affiliation
is the class attribute (democrat vs republican). The Au-
tos datasets contains 205 tuples where each tuple has 26
attributes. The class label is either symboling (risk rating)
or price of a car. Autos dataset’s continuous attributes are
discretized in our experiments and a binary class label is
created from price of a car (low price vs. high price). The
Australian credit dataset has 690 tuples where each tuple
has 16 attributes. The class attribute is whether a credit
application is approved or not (+ vs. −). We chose these
four because they are large enough to demonstrate perfor-
mance differences, and reasonably challenging for decision
tree learning. The reader is advised to visit [2] to learn
more about the structure of the datasets.

Experiments 1 and 2 are made on auto and vote datasets
respectively, because they can simulate a real world exam-
ple of l-diverse data. While privacy may not be a real issue
for this data, we give an examples below that we feel are a
reasonable simulation of a privacy-sensitive scenario. (True
privacy-sensitive data is hard to obtain and publish results

on, precisely because it is privacy-sensitive.) Experiment 1
uses attribute symboling (risk rating) as the sensitive at-
tribute and predicts the attribute price. Suppose that there
is a dealership outsourcing their cars’ pricing data. Clients
might not want to buy some of their cars because of high risk
factor (high insurance premium), so l-diversity is preserved
for symboling. Experiment 2 is done on the vote dataset.
It sets physician fee-freeze as the sensitive attribute. Sup-
pose that senate’s voting records are outsourced to a cloud
database. Voting records in public sessions are available and
they can be used with party affiliation to identify a senator’s
identity. Thus, the voting records of a private session should
be l-diverse.

Experiments 3 and 5 are made on the Australian credit
dataset and adult dataset. Decision tree models fit well on
these datasets. These experiments show how the cdtl models
behave when the underlying data is convenient for decision
tree learning. Experiment 3 uses Australian credit dataset.
It assigns attribute A9 as sensitive attribute and predicts
the class attribute. Experiment 4 uses the adult dataset.
It assigns attribute relationship as sensitive attribute and
predicts the class attribute. Relationship and A9 are the
strongest predictors of class labels in adult and Australian
credit datasets. Experiment 4 and 5 measure together the
effect of the sensitive attribute’s predictor power given a
fixed dataset. In experiment 5, the adult dataset is used
again with sensitive attribute age that is a moderate pre-
dictor. Experiments 4 and 5 use the tuples which belong to
individuals in non-private work class. So, the experiments
are made on a subsample of 14936 tuples.

On each experiment, we apply cdbsl, cnl, cdtl with 10-fold
cross validation. We measure accuracy, memory savings and
execution time savings. Weka J48 is used for decision tree
learning with reduced error pruning. 20% of the training sets
are used for reduced error pruning. Given a training/test
pair of 10-fold cross validation, the prune set is chosen ran-
domly once so that cdbsl, cnl, cdtl models are compared
within the same model space (same pruning set and train-
ing set for each algorithm). The experiments on vote and
australian credit datasets learn binary decision trees whereas
the experiments on auto and adult datasets learn non-binary
decision trees. Experiments are done using a physically re-
mote cloud server; and a laptop with Intel i5 processor and
4 GB RAM. Internet connection speed was 100 Mbps.

ets =
cdtl execution time

cnl execution time
(1)

ms =
cdtlmemory requirement

cnlmemory requirement
(2)

Equations 1 and 2 calculate execution time savings (ets)
and memory savings (ms) respectively in the experiments.
Savings are maximized as both formulas approach to zero.
In contrary, savings are minimized as both formulas ap-
proach 1. Execution times (Eq. 1) include client’s encryp-
tion/decryption, network and learning/inference costs on a
training set and test set pair (ith iteration of cross valida-
tion). In equation 2, the number of tuples in training set

0 0.1 0.2 0.3

Adult
 Age

Sensitive

Adult
Relationship

Sensitive

Vote

Auto

Australian
Credit

execution time savings

Figure 4: Execution Time Savings Graph

is the cnl’s memory requirement whereas the number of tu-
ples in the base decision tree’s (BDT) biggest leaf is the
cdtl’s memory requirement. Since the client learns sub-trees
on the fly from the unrefined leaves, the biggest leaf is the
memory upper bound.

Figure 4 and Figure 5 provides box plots showing elapsed
time and memory savings measurements on each of the 10
folds. Cdbsl is not shown, as the client cost is 0. The blue
dots on the boxplots show the mean time and memory sav-
ings. Savings graphs exhibit visually the tradeoff between
ms and ets. Given a dataset, if the memory savings are high,
the time requirements are low (as expected.) It is expected
since the high ms indicates a complex base decision tree
model in cdtl. The client needs to do more improvement
in cdtl since the leaf provided is already a bad predictor.
In addition, high ms and low ets can lead to complex deci-
sion trees that can produce overfitting. On the other hand,
low ms indicate a simple base decision tree in cdtl. Little
remains to be done at the client since the leaf provided is
already a good predictor.

Figure 6 provides measured prediction accuracies in the ex-
periments. On average, the cnl decision trees have the best
accuracy, as expected. Cdbsl decision trees have the worst
accuracy and cdtl decision trees is generally somewhere be-
tween. This accuracy trend is expected since cdbsl gives a
decision tree which is essentially the same as the base deci-
sion tree in cdtl. So, cdtl’s accuracy values show the effect
of client improvements which are done to the cdbsl model.
The exception is in experiment 4 (the Adult dataset). The
sensitive attribute is not a very good predictor. This ex-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Adult
Age

Sensitive

Adult
Relationship

Sensitive

Vote

Auto

Australian
Credit

memory savings

Figure 5: Memory Savings Graph

0.4 0.5 0.6 0.7 0.8 0.9 1

cdtl

cdbsl

cnl

cdtl

cdbsl

cnl

cdtl

cdbsl

cnl

cdtl

cdbsl

cnl

cdtl

cdbsl

cnl

A
du

lt
A

ge
Se

ns
it

iv
e

A
du

lt
Re

la
ti

on
sh

ip
Se

ns
it

iv
e

V
ot

e
A

ut
o

A
us

tr
al

ia
n

Cr
ed

it

Accuracy

Figure 6: Accuracy Graph

ceptional case shows that the collaborative model becomes
too complex after client improving (overfitting). Execution
time savings and memory savings graphs justify this fact
(Figs. 5 and 6). A possible solution to avoid cdtl overfitting
is memory savings threshold (threshold for BDT leaf size
on CDBS). However, it is hard to define an exact thresh-
old value. Given a fixed training set on CDBS, cdtl can be
learned with various BDT thresholds. The threshold hav-
ing the best accuracy on the pruning set can be chosen and
client improvements can be applied on this model.

5. CONCLUSION
This paper proposes a decision tree learning method for out-
sourced data in an anatomization scheme. A real world pre-
diction task is defined for anatomization. Collaborative de-
cision tree learning (cdtl), which uses cloud database server
(CDBS) and client, is studied to achieve this prediction task.
Cdtl is proven to preserve the privacy of data provider. Cdtl
is tested on various datasets and the results show that fairly
accurate decision trees can be built whereas client’s learning
and inference costs are reduced remarkably.

The next challenge is to extend this work in a new framework
such that there is no client processing while accurate deci-
sion trees are learned. Another direction is to observe how
the collaborative decision tree learning algorithm performs
relative to the recent differential privacy decision trees.

6. ACKNOWLEDGMENTS
We wish to thank to Dr. Qutaibah Malluhi and Dr. Ryan
Riley for their helpful comments throughout the prepara-
tion of this work. We also wish to thank to Qatar Univer-
sity for providing physical facilities required for experimen-
tation. This publication was made possible by NPRP grant
09-256-1-046 from the Qatar National Research Fund. The
statements made herein are solely the responsibility of the
authors.

7. REFERENCES
[1] The health insurance portability and accountability

act of 1996. Technical Report Federal Register 65 FR
82462, Department of Health and Human Services,
Office of the Secretary, Dec. 2000.

[2] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[3] C.-K. Chui, B. Kao, and E. Hung. Mining frequent
itemsets from uncertain data. In Proceedings of the
11th Pacific-Asia conference on Advances in
knowledge discovery and data mining, PAKDD’07,
pages 47–58, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] V. Ciriani, S. De, C. Vimercati, S. Foresti, and
P. Samarati. Chapter 1 k-anonymous data mining: A
survey.

[5] V. Ciriani, S. D. C. D. Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. Combining
fragmentation and encryption to protect privacy in
data storage. ACM Trans. Inf. Syst. Secur.,
13:22:1–22:33, July 2010.

[6] S. D. C. di Vimercati, S. Foresti, S. Jajodia,
G. Livraga, S. Paraboschi, and P. Samarati.
Extending loose associations to multiple fragments. In
DBSec’13, pages 1–16, 2013.

[7] J. Dowd, S. Xu, and W. Zhang. Privacy-preserving
decision tree mining based on random substitutions.
Technical report, In International Conference on
Emerging Trends in Information and Communication
Security, 2005.

[8] C. Dwork. Differential privacy. In 33rd International
Colloquium on Automata, Languages and
Programming (ICALP 2006), pages 1–12, Venice,
Italy, July 9-16 2006.

[9] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down
specialization for information and privacy
preservation. In Proceedings of the 21st International
Conference on Data Engineering, ICDE ’05, pages
205–216, Washington, DC, USA, 2005. IEEE
Computer Society.

[10] T. Gal, Z. Chen, and A. Gangopadhyay. A privacy
protection model for patient data with multiple
sensitive attributes. International Journal of
Information Security and Privacy, IGI Global,
Hershey, PA, 2(3):28–44, 2008.

[11] C. Giannella, K. Liu, T. Olsen, and H. Kargupta.
Communication efficient construction of decision trees
over heterogeneously distributed data. In In
Proceedings of The Fourth IEEE International
Conference on Data Mining (ICDMâĂŹ04, pages
67–74, 2004.

[12] X. He, Y. Xiao, Y. Li, Q. Wang, W. Wang, and B. Shi.
Permutation anonymization: Improving anatomy for
privacy preservation in data publication. In L. Cao,
J. Z. Huang, J. Bailey, Y. S. Koh, and J. Luo, editors,
PAKDD Workshops, volume 7104 of Lecture Notes in
Computer Science, pages 111–123. Springer, 2011.

[13] Standard for privacy of individually identifiable health
information. Federal Register, 67(157):53181–53273,
Aug. 14 2002.

[14] A. Inan, M. Kantarcioglu, and E. Bertino. Using
anonymized data for classification. In Proceedings of
the 2009 IEEE International Conference on Data
Engineering, ICDE ’09, pages 429–440, Washington,
DC, USA, 2009. IEEE Computer Society.

[15] G. Jagannathan, K. Pillaipakkamnatt, and R. N.
Wright. A practical differentially private random
decision tree classifier. Transactions on Data Privacy,
5(1):273–295, 2012.

[16] D. Kifer. Attacks on privacy and de finettiâĂŹs
theorem. In In SIGMOD, 2009.

[17] H.-P. Kriegel and M. Pfeifle. Hierarchical
density-based clustering of uncertain data. In
Proceedings of the Fifth IEEE International
Conference on Data Mining, ICDM ’05, pages
689–692, Washington, DC, USA, 2005. IEEE
Computer Society.

[18] C. K.-S. Leung and D. A. Brajczuk. Efficient
algorithms for mining constrained frequent patterns
from uncertain data. In Proceedings of the 1st ACM
SIGKDD Workshop on Knowledge Discovery from
Uncertain Data, U ’09, pages 9–18, New York, NY,
USA, 2009. ACM.

[19] A. G. Levine. Love canal: Science, politics and people.
Lexington, MA, 1982. D.C. Heath and Company.

[20] N. Li and T. Li. t-closeness: Privacy beyond
k-anonymity and l-diversity. In Proceedings of the

23nd International Conference on Data Engineering
(ICDE ’07), Istanbul, Turkey, Apr. 16-20 2007.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In Proceedings of the 22nd IEEE
International Conference on Data Engineering (ICDE
2006), Atlanta Georgia, Apr. 2006.

[22] B. Martin. Instance-based learning : Nearest neighbor
with generalization. Technical report, 1995.

[23] R. A. Moore, Jr. Controlled data-swapping techniques
for masking public use microdata sets. Statistical
Research Division Report Series RR 96-04, U.S.
Bureau of the Census, Washington, DC., 1996.

[24] A. E. Nergiz and C. Clifton. Query processing in
private data outsourcing using anonymization. In The
25th IFIP WG 11.3 Conference on Data and
Applications Security and Privacy (DBSEC-11),
Richmond, Virginia, July 11-13 2011.

[25] A. E. Nergiz, C. Clifton, and Q. Malluhi. Updating
outsourced anatomized private databases. In 16th
International Conference on Extending Database
Technology (EDBT), Genoa, Italy, Mar. 18-22 2013.

[26] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau,
and K. Y. Yip. Efficient clustering of uncertain data.
In Proceedings of the Sixth International Conference
on Data Mining, ICDM ’06, pages 436–445,
Washington, DC, USA, 2006. IEEE Computer Society.

[27] B. Rao, B. Krishnapuram, A. Tomkins, and Q. Yang,
editors. Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, July 25-28,
2010. ACM, 2010.

[28] P. Samarati. Protecting respondent’s privacy in
microdata release. 13(6):1010–1027, Nov./Dec. 2001.

[29] L. Sweeney. k-anonymity: a model for protecting
privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, (5):557–570,
2002.

[30] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S.
Patterson. Privacy-preserving decision trees over
vertically partitioned data. ACM Transactions on
Knowledge Discovery in Data, 2(3):1–27, Oct. 2008.

[31] L. Xiao. E.: An efficient distance calculation method
for uncertain objects. In In: Proceedings of 2007 IEEE
Symposium on Computational Intelligence and Data
Mining (CIDM, 2007.

[32] X. Xiao and Y. Tao. Anatomy: Simple and effective
privacy preservation. In Proceedings of 32nd
International Conference on Very Large Data Bases
(VLDB 2006), Seoul, Korea, Sept. 12-15 2006.

[33] J. Zhang, D. k. Kang, A. Silvescu, V. Honavar, and
C. B. Program. Learning accurate and concise nave
bayes classifiers from attribute value taxonomies and
data.

