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ABSTRACT
Given only a handful of local structural features about the
nodes of an anonymized social graph, how can an adversary
select an auxiliary (a.k.a. non-anonymized, known) graph to
help him/her deanonymize (a.k.a. re-identify) the individu-
als in the graph? Examples of local structural features are
node’s degree, node’s clustering coe�cient, edge density of
the node’s neighbors, etc. The objective of the adversary
is to find an auxiliary graph that has the maximum node-
overlap with the anonymized graph. We present conditions
under which an adversary may estimate the node-overlap
between the graphs; and thus be able to pick the most ap-
propriate auxiliary graph. Specifically, we consider two sce-
narios. In the first scenario, the adversary has no informa-
tion about the anonymized graph. We call this situation
the no seeds case. In the second scenario, the adversary is
able to gain some information about the anonymized graph.
For example, the adversary is able to find out that a hand-
ful of individuals are present in the anonymized graph. We
call this scenario the some seeds case. Our findings indi-
cate that (1) in the no seeds case, an adversary can predict
when the node-overlap between the anonymized and auxil-
iary graphs is low; (2) in the some seeds case, an adversary
can identify pairs of anonymized and auxiliary graphs with
high node-overlap; and (3) in the some seeds case, an ad-
versary can e↵ectively learn to predict the node-overlap on
di↵erent auxiliary graphs.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; E.1 [Data
Structures]: Graphs and Networks; K.4.1 [Public Policy
Issues]: Privacy

General Terms
Algorithms, Design, Performance, Experimentation
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1. INTRODUCTION
Suppose an organization (such as the National Institute

of Health) wishes to release social graph data.1 To protect
the privacy of the individuals in the data, the organization
first anonymizes (a.k.a. de-identifies) the graph data. As a
further layer of privacy, rather than releasing the topology of
the graph itself (i.e., its adjacency matrix), the organization
releases data in the form of a feature matrix describing local
structural properties of each node (e.g., degree, clustering
coe�cient, average degree of neighbors, etc).

An adversary interested in re-identifying individuals in
the anonymized graph will seek an auxiliary graph in which
node-identities are known. The adversary has many pos-
sible auxiliary graphs from which to choose. The question
is: which auxiliary graph is the most appropriate choice?
To break the privacy of the greatest number of individuals,
the adversary should select the auxiliary graph that has the
greatest node-overlap with the anonymized network. Thus,
the problem of picking the most appropriate auxiliary net-
work reduces to the following problem: predict the per-
centage of nodes from a known auxiliary graph that
is present in an anonymized graph�i.e., predict the
node-overlap between a pair of graphs where one is known
and the other is anonymized. Recall that the only data avail-
able from the anonymized graph is a feature matrix whose
rows are the anonymized nodes and whose columns are local
structural features (see Section 2 for details). This problem
is challenging because:

• Challenge #1: We are only given a feature matrix
representing local structural features of nodes in the
anonymized network. We do not know which nodes
are adjacent to other nodes; and thus cannot propa-
gate beliefs about whether nodes are present or absent
in the anonymized graph. This also means that we
cannot take advantage of the sparsity that is inherent
in the topology of social graphs since feature matrices
are (by definition) dense.

• Challenge #2: The anonymized graph may be drasti-
cally di↵erent from the auxiliary graph. In particular,
without any side information, it is di�cult to deter-

1A dating network is an example of a social graph. We use
the terms network and graph interchangeably.



mine how much a specific node’s structure may vary
from one graph to the other.

• Challenge #3: Nodes that are present in both the
anonymized and the auxiliary graphs may have di↵er-
ent feature values (a.k.a. profiles) than nodes that are
present in only one graph. But, these profiles are in-
consistent across various domains. For example, rules
that identify present nodes in the academic coauthor-
ship domain are seldom useful in the Hollywood col-
laboration domain.

Our empirical study (Section 3) demonstrates that when
an adversary is able to overcome these challenges, then he/she
may pose a serious threat to individuals’ privacy because
he/she can select the most appropriate auxiliary data for
deanonymization �i.e., a known dataset that has high node-
overlap with the anonymized graph.

Our extensive empirical study has three parts. In part
one (Section 3.2), we illustrate the aforementioned chal-
lenges on real networks. Specifically, in some cases, the
structural properties of nodes present in both the anonymized
and the auxiliary graphs may be very similar to the proper-
ties of the nodes that are absent from the auxiliary graph.
In other cases, where the present and absent nodes have
di↵erent properties, these properties are unlikely to be con-
sistent across graphs. In part two (Section 3.3), we present
a series of results that illustrate when an adversary may be
able to overcome the aforementioned challenges. We con-
sider two versions of this problem. In the first version, we
assume that nothing is initially known about which nodes
in the anonymized feature matrix are present or absent in
the auxiliary graph. We call this the no seeds case. In this
case, we show that an adversary is able to accurately predict
when the node-overlap between the auxiliary graph and the
anonymized graph is below 20%. The adversary can thus re-
ject an auxiliary graph as a potential candidate for further
privacy-breaking endeavors. In the second version, we con-
sider the case when the adversary has somehow managed to
learn the identities of some nodes in the anonymized graph.
We call this the some seeds case. In such a situation, we
show that the adversary can break privacy by using these
seed nodes to estimate each node’s structural change from
the auxiliary graph to the anonymized graph. We present
a method which allows an adversary to use this informa-
tion to predict the amount of node-overlap between the
anonymized and auxiliary data; and show that this predicted
node-overlap can be surprisingly accurate given a handful of
seeds. In part three (Section 3.3), we consider the some
seeds case again and show that the adversary can e↵ectively
use transfer learning to predict the node-overlap between
a second auxiliary graph and the same anonymized feature
matrix, further defeating privacy.

Our contributions are as follows:

• We reformulate the problem of finding the most ap-
propriate auxiliary data for deanonymizing a social
graph’s structural feature matrix into the problem of
predicting the node-overlap between the auxiliary data
and the anonymized structural feature matrix.

• We demonstrate the challenges involved in solving this
node-overlap problem, including issues of similarity be-
tween the nodes that are present in both graphs and
the nodes that are present in only one graph.

• We show that despite the challenges, an adversary
can accurately predict when the node-overlap between
the anonymized and auxiliary data is low. In addi-
tion, given some side information, he/she can accu-
rately predict when the node-overlap is high. More-
over, he/she can use information about the node-overlap
between the anonymized graph and an auxiliary graph
to predict the node-overlap between the same anonymized
graph and a di↵erent auxiliary graph.

The outline of our paper is as follows. In Section 2, we
elaborate on the problem definition and include a description
of our assumptions. Section 3 presents our empirical study.
In Section 4, we discuss related works. Section 5 concludes
the paper.

2. PROBLEM DEFINITION
We consider several versions of the same basic problem.

In all versions, an organization has released a feature ma-
trix F

anon

containing structural properties of nodes in an
anonymized graph G

anon

.
We assume that the organization releasing F

anon

first ap-
plies an anonymization technique to G

anon

, then computes
the features values that fill F

anon

. Many anonymization
techniques exist (see Section 4). One often selects a tech-
nique based on how much utility one wants to preserve. In
this paper, we apply an information-theoretic anonymization
technique by randomly perturbing a fraction of edges [4].
Specifically, for a given graph G = (V,E) and a fraction
r 2 [0, 1], we (1) remove unique identifiers on nodes; (2)
randomly delete k edges from G, where k = r⇥ |E|; and (3)
add k edges to G by randomly picking pairs of unconnected
nodes and adding edges between them. This anonymization
technique preserves the number of edges in a graph. How-
ever, it may not preserve other properties such as degree
distribution or clustering coe�cient, which makes it harder
for an adversary to identify a node based on properties such
as degree.

The rows of F
anon

correspond to nodes in G
anon

. The
columns of F

anon

are the following seven structural features:

1. Node’s degree

2. Average degree of node’s neighbors

3. Node’s clustering coe�cient

4. Average clustering coe�cient of node’s neighbors

5. Number of edges between node’s neighbors

6. Number of nodes adjacent to node’s neighbors

7. Number of edges outgoing from the node’s neighbors

Berlingerio et al. [2] showed that these seven local struc-
tural features correspond to four social theories�namely, So-
cial Capital, Social Exchange, Balance, and Structural Hole.
Recall that the organization does not release G

anon

itself.
The adversary obtains an auxiliary graph G

aux

. He/she
wishes to predict the fraction of nodes in G

anon

that are
also present in G

aux

. If this fraction is not low, then the
adversary knows that G

aux

is a suitable graph for his/her
deanonymization task.



In di↵erent versions of this problem, the adversary may
have additional seed information,2 which informs the adver-
sary whether a handful of individuals are present or absent
between the anonymized and auxiliary graphs. We call these
seed labels. In particular, a node in the auxiliary graph is
labeled present if it appears in both the anonymized and
auxiliary data; or it is labeled absent if it appears in only
the auxiliary data. Furthermore, the adversary may be able
to match some individuals in the auxiliary graph to individ-
uals in the anonymized data (see Section 4). We call these
seed matches.

3. EMPIRICAL STUDY
This section is divided into three parts: (i) datasets, (i)

challenges, and (iii) methods and results.

3.1 Datasets
Table 1 lists the four datasets used in our experiments.

They include two communication graphs and two social graphs.
The two communication graphs are Twitter Retweets and
Yahoo! IM. The two social graphs are DBLP Computer Sci-
ence Bibliography and IMDB Movie Collaborations.

Twitter Retweets is data from May to September 2009.
We extracted graphs from tweets such that an edge between
two Twitter users exists if one of the users had retweeted
the other user’s tweet during that period. We divide the
data into five graphs where each graph represents a month
of activity.

Yahoo! IM 3 was collected for the duration of 28 days in
April 2008. In this dataset, nodes represent users and an
edge between two users indicate that they exchanged mes-
sages during that period.

DBLP Computer Science Bibliography4 consists of coau-
thorship graphs that were collected from 2005 to 2009. We
extracted the co-authorship graphs for the papers published
in CIKM, ICDM, KDD, SIGMOD, SDM, VLDB.

IMDB Movie Collaborations5 graphs consists of individu-
als credited in movies from 1950 to 1955. The individuals
are represented by nodes and an edge between two individ-
uals exists if they have both been credited for at least one
movie during that period. We break the data into six graphs
(1950-1955), such that a graph represents the data collected
that year.

3.2 Challenges
The problem of predicting node-overlap between an auxil-

iary graph G
aux

and an anonymized feature matrix F
anon

is
challenging for a multitude of reasons. A major challenge is
that it is di�cult to distinguish between nodes in F

anon

that
are present in G

aux

and those that are absent from G
aux

.
Thus, one cannot simply calculate the node-overlap between
F
anon

and G
aux

by predicting individual node labels. To
showcase this challenge, we examine the structural charac-
teristics of nodes in G

aux

that are also present in F
anon

,
and compare these characteristics to the characteristics of
nodes in G

aux

that are absent in F
anon

. It is reasonable to
believe that present and absent nodes may be structurally

2See [10] for ways in which an adversary may come upon
such information.
3
http://sandbox.yahoo.com/

4
http://www.informatik.uni-trier.de/~ley/db/

5
http://www.imdb.com/
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Figure 1: Histogram of node-degree values from the
2005 DBLP auxiliary graph. ‘Present’ nodes are
also present in the anonymized version of the 2006
DBLP graph. ‘Absent’ nodes are not present in the
anonymized version of the 2006 DBLP graph. The
observed di↵erences are not su�cient to learn an ef-
fective (i.e., better than random) classifier that dis-
tinguishes between present and absent nodes.

distinct. If, for example, G
aux

and F
anon

consist of two sep-
arate daily snapshots of an instant messaging network, it
is possible that the higher degree nodes would be more ac-
tive and thus be more likely to exist (i.e., be present) across
multiple snapshots.

To examine the aforementioned possibility, we select pairs
of graphs from our data (described in Section 3.1). We la-
bel one graph as G

aux

and the other as G
anon

. We then
randomly perturb 5% of the edges in the graph selected as
G

anon

;6 and calculate its structural feature matrix F
anon

.
Subsequently, we annotate nodes into one of two classes:
the ‘present’ class containing nodes from G

aux

that are also
present in F

anon

, and the ‘absent’ class containing nodes
from G

aux

that are absent from F
anon

. Using values from
F
anon

, we calculate distributions of feature values from the
present and absent classes. If these classes have signifi-
cant di↵erences in their structural features, then an adver-
sary may utilize them to break the privacy of a di↵erent
anonymized graph.

Figure 1 contains the histogram of degree values for each
class when the auxiliary graph was a 2005 snapshot of DBLP
and the anonymized graph was a perturbed version of a 2006
snapshot of DBLP. We observe that in this case, there are
minor di↵erences in the degrees of present and absent nodes.
However, these di↵erences are not su�cient for learning a
classifier (such as a support vector machine), which can ac-
curately distinguish between present and absent nodes. In-
deed, the classifiers performed no better than random.

Even when the di↵erences between present and absent
nodes are noticeable, they are inconsistent across various
domains. For example, Figure 1 shows that in the DBLP
coauthorship domain, a slightly higher percentage of present
nodes tend to have very low degrees compared to absent
nodes. However, Figure 2 (which compares nodes from a

6See Section 2 for details on anonymization of G
anon

.



Real-world Avg. # of Nodes Avg. # of Edges Avg. Node-Overlap Between Graph Pairs
Graphs (Std. Dev.) (Std. Dev.) (Std. Dev.)

Twitter Retweet Monthly Graphs 63,232.5 81909.9 0.42
from May to Sep. 2009 (34,274.6) (51,498.2) (0.30)

Yahoo! IM Weekly Graphs 84,623.5 261,144.2 0.91
in April 2008 (9,435.0) (48,944.6) (0.08)

DBLP Co-authorship Yearly Graphs 2,039.6 4,022.3 0.43
from 2005 to 2009 (429.3) (1,095.1) (0.29)

IMDB Collaboration Yearly Graphs 10,887.6 236,120.2 (0.51)
from 1950 to 1955 (451.8) (51,611.1) (0.23)

Table 1: Real-world graphs used in our experiments. Each graph was anonymized by perturbing 5% of the
edges. The node-overlap values between graph pairs (where a pair refers to the anonymized and the auxiliary
data) ranges from a minimum of 0.07 to a maximum of 1 in our datasets. Here we only report the averages
and standard deviations.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree d

Fr
ac

tio
n 

of
 n

od
es

 w
ith

 d
eg

re
e 
d

 

 

Present
Absent

Figure 2: Histogram of node-degree values from the
1950 IMDB auxiliary graph. ‘Present’ nodes were
also present in the anonymized version of the 1951
IMDB graph. ‘Absent’ nodes were not present in
the anonymized version of the 1951 IMDB graph.
Note that the di↵erences between the two classes
are not the same as the di↵erences shown for the
DBLP coauthorship graphs in Figure 1.

1951 snapshot of IMDB to a 1950 snapshot of IMDB) shows
the opposite trend, where a slightly higher percentage of
absent nodes tend to have very low degrees.

Across the four domains that we considered (academic
coauthorships, Hollywood collaborations, instant messaging,
and tweets), we did not observe any consistent trends that
would allow for an accurate prediction of present vs. absent
class labels on individual nodes based solely on local struc-
tural features. This lack of consistency makes the problem of
predicting node-overlap between the anonymized and auxil-
iary data challenging.

3.3 Methods and Results
Despite the aforementioned challenges, it is still possible

for an adversary to make some headway in selecting the
“most appropriate” auxiliary data. Here, we present two re-
sults, corresponding to the cases when the adversary has no
further information about F

anon

(i.e., the no seeds case; see

Section 3.3.1) as well as the case when some supplementary
information about nodes in F

anon

is available (i.e., the some
seeds case; see Section 3.3.2).

3.3.1 Predicting Node-Overlap in the No Seeds Case
We consider the case where an adversary only has the fea-

ture matrices F
anon

and calculates F
aux

from G
aux

. He/she
has no other information. As we described in Section 3.2,
this is a hard problem. However, we propose a simple method
to predict overlap based on the distance between the centers
of the feature matrices. We observe that using this method
an adversary can confidently identify auxiliary graphs that
have low node-overlap with the anonymized data; and thus
are not appropriate for deanonymization.

Given F
aux

and F
anon

, we estimate their node-overlap as
follows:

Predicted Overlap = Maximum Overlap ⇥
(1� Canberra(Centroid(F

aux

), Centroid(F
anon

)))
(1)

where Centroid(M) takes a feature matrixM with k columns
and outputs a mean vector of size k. We use the normal-
ized Canberra distance7 in Equation 1 since it is sensitive
around small values. Maximum Overlap is the maximum ra-
tio of nodes that can be present in both graphs. It is defined
as follows:

Maximum Overlap =
min(|F

aux

|, |F
anon

|)
|F

aux

| (2)

|F
aux

| and |F
anon

| denote the number of rows (i.e., nodes)
in the F

aux

and F
anon

matrices, respectively.
We define the true node-overlap between F

aux

and F
anon

as follows:

True Overlap =
|F

aux

\ F
anon

|
|F

aux

| (3)

|F
aux

\ F
anon

| is the number of nodes that are present in
both the anonymized and auxiliary data.

Figure 3 shows that the predicted overlap (defined in Equa-
tion 1) increases as the true node-overlap (defined in Equa-
tion 3) increases. Note that when the predicted node-overlap

7Canberra(~u,~v) =
P

d

i=1
|u[i]�v[i]|
|u[i]|+|v[i]| , where d is the dimen-

sion of vectors ~u and ~v. We divide Canberra(~u,~v) by d to
normalize it.



Figure 3: Predicted overlap (Eq. 1) vs. true overlap

(Eq. 3). Graph pairs with a predicted node-overlap
of less than 0.5 have low true node-overlap (at most
0.2).

is low (i.e., less than 0.5), then the true node-overlap is at
most 0.2. Thus, when an adversary comes across an F

aux

,
for a given F

anon

, whose predicted node-overlap according to
Equation 1 is low, he/she can conclude that such an auxiliary
graph will have low node-overlap, discard it, and continue
his/her search for a better auxiliary graph.

3.3.2 Predicting Node-Overlap in the Some Seeds Case
In this section, we describe experiments where an adver-

sary first obtains some seed information (either as seed-
labels or seed-matches) about the anonymized graph; and
then proceeds to estimate the node-overlap between the anonymized
and auxiliary data.

Adversary obtains seed-labels. In this case, the ad-
versary has ‘present’ vs. ‘absent’ labels on a fraction of nodes
in the auxiliary graph and uses this side information to pre-
dict the node-overlap between F

anon

and G
aux

. We study
the e↵ect of varying the fraction of seed-labels on predicting
the node-overlap between F

anon

and G
aux

; and show that
even with as low as 10 seed-labels, an adversary can accu-
rately infer the node-overlap between the anonymized and
auxiliary data.

Recall that the adversary has G
aux

, F
anon

, and ‘present’
or ‘absent’ labels on a fraction of the nodes in G

aux

. A
‘present’ label on a node in G

aux

denotes that the node in
G

aux

is also present in F
anon

; and an ‘absent’ label denotes
otherwise. An adversary could estimate the node-overlap
between G

aux

and F
anon

by collecting the labels of the seed
nodes uniformly at random for as large a fraction as possible.
As shown in Table 1, the node-overlap between the graphs
has a wide range. In cases where the node-overlap is low
(i.e., the ratio of ‘present’ to ‘absent’ labels is skewed), it
is di�cult to accurately estimate the node-overlap from a
small sample of seed nodes.

Figure 4 reports the estimated node-overlap when we have

10 seed-labels (i.e., we know whether 10 nodes in G
aux

are
present or absent in F

anon

). These nodes were chosen uni-
formly at random from G

aux

. Figure 4 shows that an adver-
sary can estimate the overlap with a Mean Absolute Error
(MAE) of 0.03 when given only 10 seed-labels. Here, MAE
is defined on a set of n anonymized and auxiliary graph pairs
as follows:

MAE({pair1, . . . , pairn}) = (4)

1
n

nX

i=1

|True Overlap(pair
i

)� Predicted Overlap(pair
i

)|

The true overlap is the same as the definition in Equation 3.
The predicted overlap here is the number of ‘present’ seed-
labels divided by the total number of seed-labels.

The very low MAE (of 0.03 for only 10 seed-labels) demon-
strates the vulnerability of anonymized graphs (released only
by their local structural feature matrices) to accurate es-
timations of node-overlap with auxiliary graphs. We also
conducted experiments with 50 and 100 seed-labels, which
yielded MAE values of 0.01 and 0.002, respectively. As ex-
pected with more seed-labels, the MAE values decrease.

Figure 4: Predicted overlap (fraction of ‘present’
labels in the seed-labels) vs. true overlap (Eq. 3).
Mean absolute error (MAE defined in text) is 0.03
when using 10 seed-labels. MAE for 50 and 100
seed-labels are 0.01 and 0.002, respectively.

Adversary obtains seed-matches. The aforementioned
method requires the adversary to obtain an unbiased sample
of seed-labels, which may be di�cult in real-world settings.
So, we now consider a case where the adversary has obtained
a biased sample of seed-matches (say for a few vulnerable
individuals in G

aux

). A seed-match maps an individual in
G

aux

to a specific row in F
anon

. This is di↵erent than seed-
labels, where for a seed individual in G

aux

we only know
whether it is present or absent in F

anon

. Now that we have
seed-matches, we can define the concept of lookalikes.

We define lookalikes for a node x in G
aux

as the fraction
of nodes in F

anon

that are at least as similar to x as its



matched node in F
anon

. Specifically, given G
aux

, we create
a feature matrix F

aux

by computing the same local struc-
tural properties as released with F

anon

on the nodes in G
aux

.
Then for each node x in F

aux

, we compute the fraction of
nodes in F

anon

whose structural feature vector (in terms of
Canberra distance) is less than or equal to the structural
feature vector of x than its matched node in F

anon

. The
value for lookalikes between F

anon

and G
aux

is the aver-
age of lookalikes between the nodes in G

aux

to the nodes in
F
anon

. Intuitively, lookalikes can be thought of as a mea-
sure of structural change between nodes from one graph to
another. A low value for lookalikes means that there is little
structural change between F

anon

and G
aux

.
We conduct an experiment where we predict the value

of lookalikes for an hanonymized, auxiliaryi graph pair, by
estimating it from a set of seed-matches (i.e., ‘present’ nodes
whose matched node in F

anon

is known). Note that in the
previous experiment, we required the nodes with seed-labels
to be picked at random. Whereas in this experiment, we do
not need to make such an assumption. An adversary might
be able to carefully pick vulnerable nodes for whom the seed-
matches can be easily found. We assume that the adversary
seeks matches for p% of the nodes in F

aux

.8 Of the p% of
nodes in F

aux

for which the adversary seeks a match, it is
possible that matches may be found for fewer than p% of
nodes. We use the average lookalikes of the seed-matches
(which were found) as a predicted estimate of the lookalikes
for G

aux

.
Using the seed nodes (which may include ‘absent’ nodes),

we can also predict the node-overlap. Specifically, we train
an AdaBoost classifier on the seed nodes from F

aux

and their
labels; then predict labels on the remaining nodes in F

aux

.
Here, node-overlap is estimated as the ratio of nodes in F

aux

predicted to be ‘present’ in F
anon

by the AdaBoost classifier.
Figure 5 shows the predicted lookalikes compared to the

predicted node-overlap. The predicted lookalikes are the
averages over 10 runs for each graph pair. In each run,
a random sample of p =10% of the nodes in G

aux

were
chosen as seeds. The predicted node-overlap are the result
of ten-fold cross-validation to train and test an AdaBoost
classifier. The same seeds were used to predict lookalikes
and node-overlap. We observe a cluster in the top left por-
tion of the plot; these are the cases where the lookalikes
value is low, and the predicted node-overlap is very high.
A closer examination of these points reveals that the true
node-overlap in these cases is also very high. Recall that,
lookalikes is a measure of structural change between nodes
from one graph to another; hence this figure illustrates that
when the anonymized and auxiliary graphs are structurally
similar, and their predicted node-overlap value is high, then
their true node-overlap is also likely to be high. By using
this method, an adversary can confirm that his/her auxiliary
graph is appropriate to deanonymize a given anonymized
graph.

Adversary performs transfer learning. We also in-
vestigate the following transfer-learning scenario. We as-
sume the adversary has the anonymized data F

anon

, an aux-
iliary graph G1

aux

, and seed-labels (‘present’ vs. ‘absent’)
on all nodes in G1

aux

. The adversary uses one of the afore-
mentioned methods and discovers that the node-overlap be-

8Predicting lookalikes is a harder problem than predicting
node-overlap, which is why an adversary would need p% of
nodes as seed-matches, rather than a few seed-labels.

Figure 5: Predicted overlap vs. predicted lookalikes:
Using vulnerable seed-matches (here 10% of the
nodes in G

aux

), an adversary can predict very high
(close to 100%) predicted node-overlap when the
predicted lookalikes is less than 0.1. See text for
the definitions of predicted overlap and predicted
lookalikes.

tween F
anon

and G1
aux

is low. Instead of discarding G1
aux

(for which he/she has seed-labels), the adversary obtains an-
other auxiliary graph G2

aux

that has low node-overlap with
G1

aux

. Now, his/her task is to calculate the node-overlap
between F

anon

and G2
aux

. Next, we describe how an adver-
sary can use the labels from G1

aux

to better estimate the
node-overlap between F

anon

and G2
aux

.
In our transfer-learning experiments, we first create struc-

tural feature matrices F1
aux

and F2
aux

from G1
aux

and
G2

aux

, respectively. These feature matrices have the same
structural features as F

anon

(see Section 2). We then ran-
domly select 10% of the nodes in G1

aux

(i.e., rows in F1
aux

)
as our training set and train an AdaBoost classifier. Recall
that we have seed-labels on all of the nodes in G1

aux

. Us-
ing the trained classifier, we predict labels on the nodes in
G2

aux

(i.e., rows in F2
aux

). Here, node-overlap is estimated
as the ratio of nodes in G2

aux

predicted to be ‘present’ in
F
anon

. Figure 6 plots the average values across 10 runs of
this experiment; and shows that the predicted node-overlap
is better here (in the tranfer-learning case) than the case
with no seeds (as shown in Figure 3). These experiments
illustrates that if an adversary has prior knowledge in terms
of an auxiliary graph with labels, he/she is better equipped
to estimate node-overlap with other graphs. In such cases,
an adversary can choose other auxiliary graphs with higher
node-overlaps that can aid him/her in deanonymizing F

anon

.

4. RELATED WORK
Related work can be divided into (1) anonymization tech-

niques for networks and (2) techniques for deanonymizing a
social graph given its anonymized adjacency matrix.

Anonymization techniques exist that preserve the privacy



Figure 6: Predicted overlap (by transfer-learning)
vs. true overlap (Eq. 3 on G2

aux

). Most values lie on
the diagonal (with root mean square error of 0.14
from the 45� line) indicating that transfer learning
predictions are good estimates of the true overlap.

of the data while providing the intended utility. Hay et al. [6]
show that using structural queries an adversary could iden-
tify nodes. They propose a method to anonymize the graph
by grouping the nodes before releasing it. In another work,
Boldi et al. [3] anonymize a graph by anonymizing its edges,
such that the utility of the graph in term of certain proper-
ties is maintained. Zhou and Pei [13] present an anonymiza-
tion technique based on anonymizing graph neighborhoods.
Liu and Terzi [9] present a technique by which every node
has at least k other nodes with the same degree. Bonchi,
Gionis, and Tassa [4] employ an information-theoretic method-
ology in perturbing edges in order to generate an anonymized
graph. We use their anonymization technique in this study.
To the best of our knowledge, we are the first to investi-
gate the vulnerability of an anonymized feature matrix in
terms of predicting node-overlap between the anonymized
and auxiliary graphs.

The current literature is full of techniques which attempt
to break privacy when the topology of the anonymized graph
is released. Backstrom et al. [1] consider a scenario where
an adversary creates a distinguishable subgraph before the
graph is anonymized and released. They show that un-
der certain conditions, the adversary can identify users in
the anonymized graph using the structure that they ear-
lier created. Using a set of seed matches, Narayanan and
Shmatikov [11] show how the identities of the remaining
nodes can be matched. Pedarsani and Grossglauser [12]
study conditions under which the identities of nodes in an
anonymized graph could be revealed. Korula and Lattanzi [8]
assume that the anonymized graph and the auxiliary graphs
have been generated from the same underlying graphs and
break privacy of nodes by matching edges. Henderson et
al. [7] propose a framework to recursively extract structural
features of a node and use the structural features to match

nodes across graphs. Gilpin, Eliassi-Rad, and Davidson [5]
use guided role discovery to re-identify nodes. None of the
previous work considers producing a guide for an adversary
to select the most appropriate auxiliary data.

5. CONCLUSIONS
We considered the problem of predicting the amount of

node-overlap between a known auxiliary graph and a feature
matrix containing local structural properties of an anonymized
graph. This problem is relevant to a variety of deanonymiza-
tion tasks. Specifically, before an adversary can use an aux-
iliary graph (with known node-identities) for deanonymiza-
tion, he/she must first select that auxiliary graph. Without
further information, it makes sense for him/her to select the
auxiliary graph whose nodes overlap with the anonymized
data as much as possible, and so he/she needs to accurately
predict the amount of node-overlap between the anonymized
and auxiliary data.

We discussed challenges surrounding the aforementioned
problem. In particular, a major challenge is that the struc-
tural characteristics of nodes that are present in both graphs
versus those that are present only in the auxiliary graph
may be very similar to one another. We presented examples
showing degree distributions for both ‘present’ and ‘absent’
nodes. While there were some minor di↵erences, these di↵er-
ences did not generalize to other graphs. Moreover, when ap-
plying a classifier (such as a support vector machine) to the
task of di↵erentiating between ‘present’ and ’absent’ classes
of nodes, it performed very poorly even when restricted to
a single domain (such as academic coauthorships).

Despite the challenges, we showed that an adversary can
make progress in estimating the amount of node-overlap be-
tween the anonymized and auxiliary data. We considered
two possible cases. In the first case, the adversary has no in-
formation about the anonymized graph other than its struc-
tural feature matrix. In the second case, the adversary has
obtained some supplemental information.

Without any supplemental (seed) information, an adver-
sary can compare the centroids of the anonymized and aux-
iliary feature matrices, and weigh this value by the maxi-
mum possible node-overlap between the two graphs (which is
based on their relative sizes). We find that this measure con-
sistently overestimates the true node-overlap between the
graphs. Thus, if this estimate is low, the adversary can be
confident that the true node-overlap between the graphs is
also low, and should thus attempt to find a di↵erent auxil-
iary graph for his/her deanonymization task.

If the adversary can somehow obtain a random unbiased
sample of nodes from the anonymized graph that are la-
beled as ‘present’ or ‘absent’ in the auxiliary graph, he/she
can trivially estimate the true node-overlap by simply mea-
suring the ratio of ‘present’ to ‘absent’ nodes. However, it
may be unrealistic to assume that the adversary can obtain
an unbiased sample. More interestingly, if he/she can some-
how obtain a sample of seed matches that are marked not
only as ‘present’ or ‘absent’, but whose matching node in
the auxiliary graph is known, then he/she can estimate the
amount of structural change between nodes in the auxiliary
and anonymized data. Notably, this sample of matches need
not have the proper class balance between ‘present’ and ‘ab-
sent’ nodes; and it need not have any absent nodes at all.
We observed that if the amount of structural change is low
in this case, and the adversary has predicted a very high



node-overlap between the two graphs (i.e., their feature ma-
trices have similar means), then his/her prediction is likely
to be correct.

Moreover, we demonstrated that if an adversary is able to
obtain ‘present’ or ‘absent’ labels for nodes in an auxiliary
graph, describing whether those nodes are in the anonymized
data, he/she can use this information to make informed pre-
dictions about a second auxiliary graph. In this way, he/she
can predict the node-overlap between that second auxiliary
graph and the anonymized data�e↵ectively doing transfer
learning.

Although the problem of predicting the most appropriate
auxiliary graph for breaking privacy of an anonymized graph
(released as a structural feature matrix) is extremely chal-
lenging, we have shown that an adversary can often make
accurate predictions about the node-overlap between the
anonymized and auxiliary data.
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