

Finding the Most Appropriate Auxiliary Data for Social Graph Deanonymization

Priya Govindan*

Sucheta Soundarajan

Tina Eliassi-Rad

Problem & Motivation

How can an adversary select the most appropriate auxiliary graph to breach the privacy of individuals in an anonymized graph?

Goal of the adversary

Find an auxiliary graph $G_{\rm aux}$, whose structural feature matrix $(F_{\rm aux})$ has high Overlap and low Lookalikes with F_{anon}

The true node *Overlap* is the fraction of the nodes in F_{aux} that appear in F_{anon}

Lookalikes for a node x in F_{aux} is the number of nodes in F_{anon} that are at least as similar to x, as its matching node x' in F_{anon}

Lookalikes for a graph-pair is the average lookalikes of nodes in F_{aux} , normalized by size of F_{anon}

Challenges

- 1. No link structure
- 2. Nodes have many lookalikes (i.e., similar structural features)

3. Difficult to distinguish between nodes in F_{anon} that are present in F_{aux} and those that are absent in F_{aux}

Approach & Results

Case 1: Adversary has no side info

Given: F_{anon} and F_{aux}

Predicted $Overlap = Maximum Overlap \times (1 - Canberra (Centroid(F_{anon}), Centroid(F_{aux})))$

where the *Maximum Overlap* is the minimum of $|F_{anon}|$ and $|F_{aux}|$, divided by $|F_{aux}|$

 \Rightarrow

When the predicted node-overlap is low (< 0.5), then the true node-overlap is also low (< 0.2)

The features for each node in F_{anon} are:

- 1. Node's degree
- 2. Avg. degree of node's neighbors
- 3. Node's clustering coefficient
- 4. Avg. clustering coefficient of node's neighbors
- 5. # of edges between node's neighbors
- 6. # of nodes adjacent to node's neighbors
- 7. # of edges outgoing from the node's neighbors

Case 2: Adversary has labels/ matches for some nodes

Given: F_{anon} , F_{aux} , and labels (present/absent) for k nodes selected uniformly at random

Predicted Overlap = ratio of `present' labels in <math>k seeds

Given 10 seed-labels chosen uniformly at random, overlap can be predicted quite well (MAE = 0.03)

Given: F_{anon} , F_{aux} , matches for m% nodes

Predicted *Overlap* = ratio of predicted 'present' labels, by learning a classifier on labeled nodes

Predicted *Lookalikes* = Average lookalikes of seed matches

Given 10% seed-matches, overlap can be predicted very accurately (~100%) when the predicted lookalikes is < 0.1

Case 3: Adversary has labels on another auxiliary graph

Given: F_{anon} , $F1_{aux}$, $F2_{aux}$, labels on all nodes of $F1_{aux}$

A classifier is trained on the labels of $F1_{aux}$; is used to predict labels on the nodes of $F2_{aux}$

Predicted *Overlap* between F_{anon} and $F2_{aux}$ = ratio of predicted 'present' labels, by the classifier

Most values lie on the diagonal (with RMSE = 0.14 from the 45-degree line), thus transfer-learning predictions are deemed good estimates of the true overlap

Conclusion

- Selecting the most appropriate auxiliary data for deanonymization of F_{anon} reduces to the problem of predicting the amount of nodeoverlap between F_{anon} and F_{aux}
- Given **no additional info**, an adversary can identify graphs with low *Overlap* with F_{anon}
- Given labels for some of the nodes, an adversary can predict the *Overlap* quite well. If also given some seed matches, an adversary can estimate the *Lookalikes* for the given graph pair
- Given labels for one graph, an adversary can learn to predict *Overlap* in another graph.

* priyagn@cs.rutgers.edu