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5. Let’s breach 
some privacy! 

3. Releases 4. Gets 
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for her deanonymization 
task? 
 
A. Find an auxiliary graph 
Gaux, whose structural 
feature matrix (Faux) has 
high Overlap and low 
Lookalikes with Fanon 
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  The true node Overlap is 

  the fraction of nodes in Faux that appear in Fanon 
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Overlap & Lookalikes 
  The true node Overlap is 

  the fraction of nodes in Faux that appear in Fanon 

  Lookalikes for a node x in Faux  is 

  the number of nodes in Fanon that are at least as similar to 
x, as its matching node x’ in Fanon  

  Lookalikes for a graph-pair is  

  the average lookalikes of nodes in Faux, normalized by 
size of Fanon 
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Challenges 
 No link structure  
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Challenges 
 No link structure  

 Nodes have many  
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Challenges 
 No link structure  

 Nodes have many  
lookalikes (i.e., similar  
structural features) 

 Difficult to distinguish  
between  nodes in Fanon  
that are present in Faux and those that are absent in Faux 
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  Case 1: Adversary has no side information 

  An adversary can identify graphs that have low (< 0.5) Overlap with 
Fanon 
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We consider three cases 
  Case 1: Adversary has no side information 

  An adversary can identify graphs that have low (< 0.5) Overlap with 
Fanon 

  Case 2: Adversary has labels/matches for some nodes 

  With labels for a handful of randomly selected nodes, an adversary 
can predict the Overlap quite well (with MAE = 0.03) 

  With some (~10%) seed matches, an adversary can identify graphs 
that have very high (~100%) Overlap  and very low (<0.1) Lookalikes 
with Fanon 

  Case 3: Adversary has labels on another auxiliary graph 

  An adversary can accurately learn to predict Overlap in another 
graph 
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Come to  
our poster  
for details 


